Burtt: Foundations of Modern Science

April 25, 2012

The Metaphysical Foundations of Modern Science
E.A. Burtt
(Dover, 2003) [1932]
352 p.

That man is the product of causes which had no prevision of the end they were achieving; that his origin, his growth, his hopes and fears, his loves and his beliefs, are but the outcome of accidental collocations of atoms; that no fire, no heroism, no intensity of thought and feeling, can preserve an individual life beyond the grave; that all the labours of the ages, all the devotion, all the inspiration, all the noonday brightness of human genius, are destined to extinction in the vast death of the solar system, and that the whole temple of Man’s achievement must inevitably be buried beneath the debris of a universe in ruins — all these things, if not quite beyond dispute, are yet so nearly certain, that no philosophy which rejects them can hope to stand. Only within the scaffolding of these truths, only on the firm foundation of unyielding despair, can the soul’s habitation henceforth be safely built.

– Bertrand Russell, Mysticism and Logic

I begin with this quotation because it gives us a vivid portrait of the predicament into which the metaphysics of modern science has led us. We have arrived at a picture of the world, and an understanding of our own place within it, which is, in a great many respects, hostile not only to the conception of human nature that reigned prior to the modern period, but, one is tempted to say, to even the most basic notion of man as a rational and moral creature. This situation, which I in certain moods can see only as an impasse, has come about in part because we have adopted a particular view of the natural world. It is the burden of E.A. Burtt’s classic book on the philosophy of science to outline this view, and to describe the historical circumstances in which it developed.

It developed out of something, and it is worth trying to sketch the basic contours of what preceded it. For late medieval man, nature was qualitative and inherently intelligible. Things has natures which were in principle knowable, and the whole natural order, though not itself intelligent, was nonetheless teeming with teleological relations. The texture of the world was thick: objects presented themselves to the understanding as unities, rich with colour and sound, and the beauty they conveyed to the mind was a modest but real intimation of a deeper, more permanent order. If man was considered to be, in some sense, above nature, this did not prevent his being at home in the world, for it was a world in which the human experience of will and desire, or the love of beauty, or the longing for knowledge was perfectly intelligible.

The birth of modern science did away with this view of things, perhaps with good intentions, sometimes with good reasons, and unquestionably with great success. Eventually it bequeathed us a world in which we appear as aliens, a world devoid of purposes, stripped of meaning, colourless and silent, comprised solely of bodies moving in space and time in a manner described by mathematical relations. We see the world as a massive machine, functioning according to fixed principles, best understood by examining its basic parts, and wholly governed by temporal (or, in Aristotelian terms, efficient) causation. Paradoxically, given the concomitant massive increase in our capacity to manipulate the natural world to serve our ends, the very framework whereby the world might be intelligible to us has been dismantled; we are reduced to speculation and inference based on neural signals produced by particles impinging on our sensory organs. The realm of qualities, purposes, and meaning, which can scarcely be entirely dispensed with, but which can find no place in the world so conceived, has been confined to scattered, and increasingly mysterious, things called ‘minds’. And now, with the turning of the wheel, the attempt is made to close the circle: to absorb even minds, hitherto the shelter for all those aspects of reality not compatible with the mechanistic, mathematical framework, into the framework itself. Our situation is, to say the very, very least, dramatic.

A thorough rehearsal of the historical development of the modern view would be a book-length project — indeed, it would be this very book — but I can sketch the main trajectory. Generally speaking, there are two important streams of thought to consider: the mathematical and the empirical. Both had roots in the medieval period. Though largely independent as they developed, they both informed the thought of Isaac Newton, who formulated an influential fusion of the two.

The revival of interest in Pythagorean thought was an important factor. Pythagoras had famously claimed that the world was made of “number”, and though the meaning of this claim was perhaps somewhat mysterious, it exerted a certain fascination. Late medieval astronomers showed a particular interest, and for intelligible reasons. It is easy to see, for example, how the sciences of astronomy and geometry, a physical science and a mathematical one, were considered closely related. In fact, Burtt argues that in the minds of at least some astronomers, astronomy just was geometry: astronomers studied the geometry of the heavens. To such men, it was natural, and even tempting, to believe that what was true in geometry was also true, in some sense, in the heavens. Thus when Copernicus proposed his heliocentric theory of the cosmos, the fact that it was mathematically simpler than the prevailing Ptolomeic model was interesting, and suggested to some, if not in Copernicus’ generation then certainly in the succeeding ones, that its mathematical simplicity was itself providing physical insight into the actual structure of the cosmos.

Johannes Kepler made a more radical claim: he argued that the mathematical order discernible in nature was itself the cause of the observed facts about the world. The real world was, in his mind, just the mathematical harmony discoverable in it. The strangeness of this idea ought to impress us: it was not that the world exhibited certain regularities such that aspects of it could be modelled using mathematical concepts exhibiting those same regularities — what we might call an instrumental use of mathematics — but rather that a mathematical description penetrated to the core of being, yielding a foundational understanding of the natural world. This essentialist view of mathematics was to prove very influential. An epistemological consequence followed: genuine knowledge of the world amounted to knowledge of its mathematical structure; mathematics provided not just a description of the natural world, but an explanation of it.

Kepler’s ideas influenced Galileo, who also believed that mathematical order implied necessity in nature. Galileo’s special contributions were, first, to explicitly abandon final causality as a principle of explanation in the physical sciences, and, second, to clarify the distinction, still hazy for Kepler, between the emerging concepts of primary and secondary qualities. The idea that final causality should be given up in favour of efficient causality had medieval precendent (in the thought of John Buridan, for instance), but until Galileo’s time it had not gained much traction. No doubt the waning influence of Aristotle was part of the reason why the time was ripe, and it is likely that the appeal of mathematical physics was another factor: it is more difficult (though not obviously impossible) for final causes to be given a mathematical formalism. To those seeking to construct a mathematical description of nature, therefore, and especially to those who believed that nature was intrinsically mathematical, final causes could have no appeal and provide no insight. The interesting question for these men was no longer ‘why’, but only ‘how’. The world so conceived was mechanical in substance: it consisted of bodies moving in space and time according to fixed mathematical relations. (Indeed, space and time now began to acquire status as fundamental metaphysical notions, which they certainly had not had in Aristotelian thought.) It is crucial to notice, in this context, that it was the method, inspired by a particular view of the natural world, that disposed with final causes, rather than, say, a particular discovery about the world.

The distinction between primary and secondary qualities was motivated — and, arguably, created — by the adoption of the mathematical concept of nature as well. Primary qualities are those features of an object that truly inhere in it, which cannot be separated from it. Secondary qualities, on the other hand, though we commonly ascribe them to objects, do not truly belong to them. For an Aristotelian, for instance, the redness of a red ball may be accidental, but it is still truly a property of the red ball that it is red, whereas for the early moderns like Galileo the ball only seems red, but it is not actually so; its redness is a secondary quality ascribed to the ball on the basis of certain peculiarities of the human senses; its redness exists only in the mind. The distinction between primary and secondary qualities arose for early modern scientists because they were committed to a mathematical view of nature, yet certain features of the natural world were not amenable to mathematical treatment. Those aspects of the world which could be treated mathematically — size, shape, position, motion, magnitude — were called “primary” and were considered real properties of objects, whereas those aspects which resisted mathematical treatment — colour, sound, smell, not to mention more intangible qualities like beauty or goodness — were called “secondary” and were relocated from objects to minds. Thus, on this view, objects in the external world possess only primary qualities, and second qualities are confined to mental life. Indeed, “man is hardly more than a bundle of secondary qualities”. Burtt comments on this state of affairs:

Observe that the stage is fully set for the Cartesian dualism on the one side the primary, the mathematical realm; on the other the realm of man. And the premium of importance and value as well as of independent existence all goes with the former. Man begins to appear for the first time in the history of thought as an irrelevant spectator and insignificant effect of the great mathematical system which is the substance of reality.

The mention of Descartes is natural enough at this juncture, but before continuing that line of clear and distinct thought it is worthwhile to pause a moment to reflect on the motives and the evidence for the mechanistic, mathematical view of the world. If Burtt is correct, this conception of the world is by no means a discovery of the sciences, but rather a methodological stipulation. What evidence is there for it? The question is more difficult to answer than one might expect. The incredible success that the sciences have enjoyed in describing a vast range of physical phenomena strongly suggests that there is something right about the general view, for under its guidance we seem to have gained real insight into the physical world. Moreover, we know that the atomic hypothesis is broadly correct: there really are particles moving around in space and time. But this is not really contested; the question is not whether this view is correct, so far as it goes, but whether it provides an exhaustive description. Is there nothing more to the world than these particles? The fact that the investigations of the sciences have never discovered anything which could not be fit into the mathematical framework, while sometimes cited as evidence for the truth of the framework, is nothing of the sort. Methodological limitations are being conflated with ontological ones. Is it, after all, a coincidence that the world as conceived by the mathematical physicist answers so perfectly to his needs?

Returning to Descartes, it is clear that his division of the world into res extensa and res cogitans was a natural development of the distinction between primary and secondary qualities: primary qualities belonged to the former and secondary qualities to the latter. Descartes, too, was convinced from an early age that mathematics was the key to genuine knowledge; his entire philosophical project was constructed on that assumption. Even more than some of the other early modern natural philosophers, Descartes was attracted by the idea that nature was not just mathematical, but geometrical. He resisted the idea that motion could be reduced to mathematical formulae only by attributing to bodies non-geometric qualities (such as mass); his famous vortex theory was a remarkable, though unsuccessful, attempt to produce a geometric theory of gravity. With Descartes the idea that nature is purely mathematical becomes tautological, for he defined the world external to the mind as consisting only of extended objects possessing primary qualities, with everything else pushed into the subjective realm of mind. In consequence, the mental realm was, for him, not a possible object of scientific study, for it consisted precisely of those qualities, attributes, and powers which eluded scientific methods.

Not everyone, however, was content with a sharp distinction between the physical and mental. Hobbes attacked Cartesian dualism, and made an attempt to subsume everything, including mind, into the res extensa. He was not successful, but his following has waxed greatly in the meantime. The question of whether that project can possibly succeed is an exceedingly interesting one that can, however, not deter us now. Instead, I simply note that, whether on the Cartesian or the Hobbesian side, many of the basic concepts were shared: efficient causality, mathematical description, bodies in motion, reductionism, and mechanism. The formulation of the metaphysics of modern science was substantially complete.

We have yet, however, to take account of the second principal stream of thought that informed the Newtonian synthesis: the empirical tradition. The principal figure here is Robert Boyle. Empiricists were, in general, less radical than their counterparts in the mathematical tradition. They resisted the push to reductionism, making productive use of concepts such as heat, weight, hardness, brittleness, etc. which could not obviously be ascribed to individual atoms. Boyle had moderate views: he valued qualitative descriptions, maintained the reality of secondary qualities, and was willing to entertain the existence of final causes. He also took a modest view of human knowledge, being suspicious of grand explanatory systems and thinking it often necessary to be satisfied with probable explanations rather than certainties. Paradoxically, it was he who began to point out certain skeptical consequences of the ideas propounded by those intent on obtaining genuine and certain (that is, mathematical) knowledge: if the picture of the world as conceived by Galileo and Descartes was correct, if the soul knows the world only through the effects of bodies impinging upon the senses, and if the world is not intrinsically ordered toward intelligibility, skeptical consequences follow. I will return to this point below. We should also note, however, that despite some differences, Boyle also accepted many of the new assumptions of natural philosophy. His view of man was largely Cartesian: “engines endowed with wills”.

In Isaac Newton these two traditions found a common advocate and were, to a large degree, integrated with one another. Newton’s basic method was, first, to work from observation and experiment to principles (in keeping with the empirical tradition), and then from principles to other phenomena (as in the mathematical tradition). Experiments were always involved at both the beginning and the end of an investigation, and the physical principles were always expressed mathematically. His synthesis has proved remarkably robust. Burtt notes, “Newton enjoys the remarkable distinction of having become an authority paralleled only by Aristotle to an age characterized through and through by rebellion against authority”. Though some of his scientific ideas have been superseded, his basic approach to scientific studies and the metaphysical system within which it was expressed remain dominant today.

Naturally, the emergence of the modern metaphysics of nature had an effect on theology. The relationship of God and the world has always been an important theological question, and it could not but be touched by a revolution in our views of nature. The repercussions within theological circles were sometimes comical — or would have been, had so much not been at stake. Henry More, for instance, gave this list of attributes: “one, simple, immobile, eternal, perfect, independent, existing by itself, subsisting through itself, incorruptible, necessary, immense, uncreated, uncircumscribed, incomprehensible, omnipresent, incorporeal, permeating and embracing all things, essential being, actual being, pure actuality” — as attributes of space! Space, he argued, was “divine presence”; even God, being real, was thought to be a res estensa! Malebranche too said something similar. Robert Boyle, as before, was more moderate in his views, but was nonetheless clearly under the influence of the mechanical worldview. He stressed, very wisely, that God was known naturally and normally through the world’s regularity, not through irregularities (that is, miracles); in his view, God maintained the “general concourse” of the universe as an harmonious whole. His view of God tended toward the Deist; he described God, using a phrase that was to have an unfortunate legacy, as the artificer of “a rare clock”. This general view he bequeathed also to Newton, who made a hash of it: he thought of God as providentially intervening in the world to “repair” it when necessary. For instance, he believed that God needed to intervene to keep the stars (which would tend to collapse together under the influence of universal gravitation) apart from one another. Burtt dryly notes that “to stake the present existence and activity of God on imperfections in the cosmic engine was to court rapid disaster for theology”. As time passed, under pressure from thinkers like Hume and Kant, the need for (and the knowability of) this God became more doubtful. The general story is familiar enough, but it is worth contrasting the God so conceived with the conception of God that was compatible with medieval metaphysics: in the medieval view, God had no purpose, but was the ultimate object of purpose, the final end of everything; natural processes were thus themselves examples of his providential action. In the modern view, he was demoted to custodial duties, his actions confined to the service of a greater end: the order and mathematical harmony of the universe.

God, however, has not been the only victim of skepticism in the light of modern metaphysics. I noted earlier the paradox that a view born principally of a desire for genuine and sure knowledge of the natural world should itself produce skepticism about that same knowledge, yet it is quite true. A universe consisting merely of atoms moving in space inclines one more or less strongly toward nominalism — that is, to the view that the world is not inherently intelligible, our concepts being merely conventions that do not correspond to real things. Moreover, the ascent of atheism itself intensified skepticism, for if the world is not underwritten by an intelligence, what reason have we to suppose it can be grasped by our intellects? “It was by no means an accident,” writes Burtt, “that Hume and Kant, the first pair who really banished God from metaphysical philosophy, likewise destroyed by a sceptical critique the current overweening faith in the metaphysical competence of reason. They perceived that the Newtonian world without God must be a world in which the reach and certainty of knowledge is decidedly and closely limited, if indeed the very existence of knowledge at all is possible.” And, in a kind of reductio ad absurdam of the mechanistic metaphysics, the effort to extend it into the mental realm results, as it apparently must according to the terms available, in the obliteration of specifically mental life itself and those things belonging to it, such as the very concept of knowledge. It is the ultimate apotheosis of skepticism. But that is a topic for another time.

At the end of this long analysis, I suppose the question hanging in the air is: if not this, then what? How should I know? I am as beholden to the modern assumptions as much as anyone — and, as a physicist, I am perhaps beholden more than most. Yet I can see the problems clearly enough, and I can see, too, that the positive arguments in favour of the currently dominant view are surprisingly weak. It seems likely to me that we are guilty of allowing our method to dictate our ontology, which is a clear fallacy.

Yet it is far from clear how best to respond to the situation. One possible step would be to reappraise the rejection of final causality. The sciences have in any case never been entirely consistent in rejecting them: biologists in particular find it hard to resist making teleological claims when they discuss their subject, and there may be resources within physics as well for a restoration of final causes (I am thinking of teleological interpretations of the action principle in both classical and quantum mechanics). It is sometimes thought that final causes, having to do with goal-directedness and purpose, require the existence of a presiding or immanent intelligence or will, which requirement seems to imply either personification of nature or theism, but actually this is not true; Aristotelian final causes imply neither. Second, we may reconsider our commitment to reductionism: even if it is true (as it is) that the world is comprised of particles in motion, is it really true that an understanding of the properties of those particles is, in principle, sufficient to understand everything else? Are the physical properties of ink molecules on a sheet of paper really enough to account for the meaning the written word conveys? It seems obvious that a bridge is out somewhere. A richer metaphysics could provide room, once again, for serious and honest engagement with non-mathematical aspects of reality. But I am a feeble philosopher, and such things are far beyond my competence.

In the meantime we are left with a view which, though having been wonderfully successful in certain respects, ultimately has no place in it for you and me: rational beings who think about things from a first-person perspective and act in the world out of our own freedom. As such, the battle is joined.

About these ads

4 Responses to “Burtt: Foundations of Modern Science”

  1. Adam Hincks Says:

    I’ve just gotten around to reading this. A really excellent post and great summary.

    It’s worth pointing out that the mathematical treatment of Galileo at successors has strong Platonic resonances as well. (And obviously Plato was himself influenced by the Pythagoreans.) In the Timaeus, it is not clear whether mathematics represents the forms or whether the forms are themselves mathematical, but the mathematics are important no matter which and permeate his metaphysics. The primary/secondary quality distinction could probably also be understood Platonically: ‘sights and sounds’, or sensible phenomena, are sharply distinct from intelligibles, though I am not aware of whether he treats the psychology of sense perception in as much detail as, say Descartes (whom my ancient philosophy instructor called a ‘Christian Platonist’).

    This is not to say that there is not virtue in a Platonic scheme. Aquinas figured out how to work a Platonic notion of participation into his metaphysics but I am not well-versed on it. It could be that there are many fruits in Thomism for the philosophy of science. I believe that Lonergan attempted something like this, but again, I am not read up on it.

    It is then curious how nominalism arose, it being wholly antithetical to a Platonic/Pythagorean metaphysics. Does Burtt discuss this shift?

    Does he discuss the impact of Kant beyond the divorce of theology and science?

    I think you’re right to bring up the issues of final causality and reductionism. You are very correct to point out that final causality is not an attempt to smuggle in theism: in fact, for Aristotle, final causality is introduced in the Physics, which is about nature herself and is distinct from his the science of theology. The final cause usual coincides with the formal cause: the final cause of a flower is to be a full-grown flower. (Of course, final causality also plays an important role in his theology, but the exact nature of the causal relationship between the Unmoved Mover and the rest of being remains, shall we say, unsolved by Aristotle.)

    As for reductionism, it is something that is widely assumed, and is, in some ways, compelling, but do we have any solid evidence in its favour? It seems to me a philosophical preference (that many perhaps do not realise that they have accepted) more than anything else. But then again, like you, I am moving beyond my competence.

  2. cburrell Says:

    My thanks to you, Adam, for reading the entire thing! It did turn out to be rather long.

    You raise excellent questions. To answer them properly I’ll have to take another look at the book. Unfortunately that’s unlikely to happen for a week or so, owing to an all-consuming job-related task that I am labouring under.

    The flip from something like Platonism to something like nominalism is, as you say, very interesting. I expect we should look at Hobbes, but I’d have to double check. It might be an example of a process that is also seen in other contexts: one generation poses bold new ideas while unreflectively assuming certain (more or less contrary) things it inherited from its culture, but subsequent generations are principally influenced by the bold new ideas, and the climate of thought changes.

    More anon, I hope.

  3. Adam Hincks Says:

    Well, it’s not urgent! And my reply was written rather too sloppily compared to your well-crafted review.

  4. cburrell Says:

    Nonsense. And while I agree there is no particular urgency, I don’t like to let comments sit with no response for too long, lest the person kind enough to leave a remark think I am not listening, could not care less, etc.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 146 other followers

%d bloggers like this: